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A Remark on the Use of the Decomposition F = F F in Plasticity

by

J. Casey and P. M. Naghdi

General Background

The nonlinear theory of elastic-plastic materials developed by Green and

Naghdi [1,2] employs the total strain and plastic strain among its independent

kinematical variables . Another theory by Lee [3) utilizes an intermediate

stress-free configuration, together with the associated multiplicative decom-

position of the deformation gradient. As pointed out by Green and Naghdi [4],

Lee's development is valid only for initially isotropic materials. Other authors,

among them Mandel [5] and Lubliner [6], have more recently made use of the

multiplicative decomposition and have claimed that the theory of Green and

Naghdi is unduly restrictive in that (see, e.g., [6, p. 165)) it is applicable

only to "certain special cases of isotropy." The main purpose of this note is

to show that if full invariance requirements are invoked, then the theories

employing the mutliplicative decomposition lose the generality attributed to

them [5,6] relative to the development in [1,2]. In addition, although a

complete list of references on the subject is not cited, some aspects of the

present discussion will serve to clarify certain misunderstandings in the

literature on plasticity involving the use of the multiplicative decomposition

without satisfying full invariance requirements.

Department of Mechanical Engineering, University of California, Berkeley.

The theory of elastic-plastic materials in [1,2] includes thermal effects and is
leveloped within the framework of a thermodynamical theory. Although we confine
attention to the purely mechanical aspects of the subject, the basic theory
referred to here can be interpreted in the context of the isothermal theory and
rorresponds to a second form of the theory discussed in section 4 of [2].



Let X be a particle of an elastic-plastic body M and denote by X and x,

respectively, the positions of X in a fixed reference configuration K and

the current configuration K at time t. Let F, which for convenience we express

as a function of X and t, be the deformation gradient relative to the configura-

tion K and recall that det F> 0, where det stands for determinant. The trans--O

pose and inverse operations will be denoted by superscripts T and -1, respec-

tively, and I is the unit tensor.

Now it may be observed that if H is any tensor function of X and t with

det H> 0, then F= (F H- )H with the property that det(F H-1 ) > 0. Hence, F can

always be decomposed-- with evident nonuniqueness-- as a product in which both

factors have positive determinants. Such a decomposition, namely

F=FF , ()

with det F > 0, det F > 0 is used in plasticity theory. However, the use of~e ~

(1) in plasticity is supplemented with further restrictions which reduce the

extent of nonuniqueness but result in possible nonexistence of the decomposition.

To elaborate, let dX be an arbitrary material line element of tB in the neighbor-

hod of the particle X and let dX and dx= F dX be the corresponding line elements

in the configurations Ko and K, respectively. Put dy= F dX. Then, dx- F dy

by (1). Considering all material line elements dX at X in 1, we can form a

local configuration from the elements dy; the collection of such local configura-

tions (for all X inS) is usually referred to in the literature on plasticity

as an intermediate stress-free configuration K; in the special case of

homogeneous deformations for which F and F are independent of X, K will be a
e p

global configuration of C5 . We observe that as part of the definition of c it

must be required that:

(a) for each x, the portion of B that occupies an arbitrarily small

2.



neighborhood of x be reduced to a state of zero stress ; and

(b) the quantity

E (FTF -I) , (2)
~p ~p-p

called plastic strain, has the same value at the particle X in K and K.

The deformation of dX into dy is then interpreted as plastic and that of dy

into dx as elastic. Let e. and e A be fixed orthonormal bases associated with

the configurations K and K09 respectively. Then, the components F of F
iA -

referred to these bases satisfy the compatibility conditions 3F iA/a = FiB/X A

with respect to reference position X= X e while the tensors F and F in
A~ A -e -p

general do not satisfy any compatibility conditions; and, consequently, the

configuration K cannot be mapped smoothly into K or K.
-0

Issues Involved in the Use of (1)

Three main issues are involved in the use of the multiplicative decomposition

(1). These are: (i) existence of a configuration such as K, (ii) uniqueness of

K or equivalently of the factors F ,F and (iii) the invariance requirements
- -e -p

under superposed rigid body motions to be satisfied by FeFp and their consequent

effects on the constitutive equations. We discuss these issues separately.

i) Existence. As was pointed out in [4], it is possible to reduce the

stresses in a material element to zero without changing E if and only if the-p

origin 0 in stress space lies in the region q bounded by the yield surface D9.

It is not always the case that & belongs to 9 and therefore if (1) is assumed,

it will involve a restriction on possible constitutive equations and/or possible

deformations. On the other hand, if such restrictions are not imposed, then

The reduction to a state of zero stress is in the context of the purely mechanical

theory only. The corresponding reduction in the thermodynamical theory can be

discussed similarly.

This requirement, as already noted by Green and Naghdi [], is implied by the

usual statement that the total strain associated with the element dy is a
"plastic strain" and is equal to the plastic strain associated with'the

element dx.

3.



the decomposition (i) will not always exist.

(ii) Uniqueness. It follows from the requirement (b) that in any two

intermediate stress-free configurations corresponding to the same current

configuration K, E has the same value at the particle X. Hence, in view of
-~p

(1) and (2), F and F are not unique to the extent that they are determined~p -e

only to within a proper orthogonal tensor function Z of X,t so that F Z T, 7 F

also satisfy (1) and leave the left-hand side of (2) unchanged. It then follows

that the configuration K is locally determined at time t only to within a rigid

displacement
§

(iii) Invariance Requirements. First we recall that in response to certain

remarks made by Lee [3], Green and Naghdi 14] studied the possibility of

accommodating the decomposition (1) within the framework of their general thermo-

dynamical theory [1,2] in which, in addition to temperature 8 and work-hardening

parameter K, the kinematical variables were the total strain E =!(FTF-I) and the

plastic strain E introduced as a primitive variable. In [1,21 E and K were-p -p

assumed to be unaltered under superposed rigid body motions. It was established

in [4] that by assuming the decomposition (1) and making the identification

between the primitive quantity E in [1,2] and the defined quantity E in (2),
-p -p

that a theory utilizing the variables F and F could be derived from that of~e p

Green and Naghdi [1,2].

With reference to the invariance requirements, we recall that physical

considerations demand that certain fields and functions entering the theory
**

be indifferent to any transformation which takes the present configuration K

There is a dependency on X since the stress-free configuration is local.

§At this stage of our discussion, it cannot be said whether the requirement (a)
an reduce this lack of uniqueness. We return to this later; see the end of
t he paragraph containing (3).

0*

de use the term indifferent for brevity to mean unaltered or unaltered apart
from orientation as defined in 171. The notations F+,E*, etc., here are in
Line with those in [71 and correspond to F ,E , etc:, in [41.
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of a body rigidly into a configuration K . Since I is locally Just another

configuration, then by the same physical reasoning, it was assumed in [4] that

these fields and functions are also indifferent to a transformation that

independently replaces the intermediate configuration 7 by a configuration K

+ 7
related to K through a superposed rigid body motion. Let K -K and by

independent superposed rigid body motions. Then, we have the transformations

+ + _

. ,F F+ , Fe - F+ and F - F+ with
- ~ e -e ~p ~p

F = Q(t)F = F F F+ = Q(t)F (t) , FP = (t) , (3)
- -.-~-p -e -P

where Q(t) and (t) are proper orthogonal tensor-valued functions of time only

corresponding, respectively, to the arbitrary rigid body rotations in the

moinstrog wih + an -+

motions through which K -K and K-. K Clearly, E in (2) and E will remain

unaltered under the above transformations and the work-hardening parameter K

is assumed to also remain unaltered. Furthermore we assume that the stress

tensor which appears in the constitutive discussion, namely the symmetric

Piola-Kirchhoff stress S for both configurations K and K, remains unaltered

+ -
under the transformations K - K , K- K . It is then clear that K satisfies

requirements (a) and (b) above if and only if K does, i.e., K is an inter-

nediate stress-free configuration if and only if K is. In particular, since

we can now conclude that S = 0 in K if S 0 in K, it follows that requirement

(a) does not further reduce the lack of uniqueness mentioned under (ii).

The invariance requirements (3) were observed by Green and Naghdi [4] § and

were later used by Naghdi and Trapp [9] in effecting an essential reduction in

.he form of the strain energy response function. In contrast to the full

invariance requirements, those adoptcd by many authors correspond to (3) but

with (t)=I. In some cases, for example 13], erroneous results were avoidedrl
invariance requirements of the form (3) were also adopted independently by

Sidoroff (8], although he appeals to the principle of material frame-
indifference.



because the analysis was restricted to isotropic materials. However, Mandel

[51 introduces the idea of ant isoclinic" stress-free intermediate configura-

tion K, i.e., one that has a fixed orientation relative to a set of axes in

space, and adopts invariance requirements corresponding to (3) with Q(t)I.

The notion of a fixed orientation used in [51 is itself not an invariant one.

For Mandel's scheme to have any physical relevance, his results must be indif-

ferent to the choice of fixed orientation. This leads one to demand that the

full invariance requirements (3) be satisfied. We discuss this further below,

but note here that Mandel's scheme is adopted by Lubliner [6] who repeats the

criticisms of [1,41 stated in [5].

We have already indicated that the definition of a stress-free configura-

tion (involving the requirements (a) and (b) noted earlier) determines K only

to within a rigid displacement at time t. In this connection, it is perhaps

natural to ask if by introducing a further assumption one could choose a unique

K from among all possible intermediate stress-free configurations and thereby

obtain a unique choice for F . In examining this possibility, one is immedi-
-p

ately led to conclude that unless a nonuniqueness of rotation Q remains in K,

the full invariance requirements (3) will not be satisfied. To elaborate,

consider for example a possible additional assumption that F be symmetric_e

positive definite. Then, application of (3)2 shows that F+ is not symmetric

positive definite unless Q(t) is set equal to Q(t) in (3). But, such a

stipulation on the invariance requirements (although it may be specified

mathematically) is unduly restrictive on physical grounds. Similarly, an

tActually, Mandel [5, p. 728] employs the terminology "configurations isoclines."

It is clear that any chosen isoclinic configuration K at time t may be regarded

as corresponding to Q(t) =I. A different choice of orientation will then result

in a different Q(t) If this choice is to be arbitrary, then (t) must be

irbitrary also.

L 6.



assumption that F be symmetric positive definite is not an invariant idea
-p

since F+ will not be symmetric positive definite. It should be kept in mind
-p

that the invariance requirements (3) embody the idea that at time t all inter-

mediate stress-free configurations differing from one another by a rigid

displacement are physically indistinguishable and there are no physical grounds

for choosing one of them rather than another. However, while K and hence F
- -p

cannot be chosen uniquely, it is important to note that E can be chosen
-p

uniquely, for example through the definition (2).

implication of Invariance Requirements Stated Under (iii)

In what follows we shall need to have available some results from [1,2,4].

interpreting the isothermal case of the theory in [1,2] as corresponding to the

purely mechanical theory we obtain

= (E,E K) , S = o (-E)

as properly invariant constitutive equations for the strain energy per unit mass

and the symmetric Piola-Kirchhoff stress tensor S, where P is the mass density

in the configuration K . It is understood that the response function 1P in (4)
-0

is expressed as a symmetric function of E. In addition, for fixed values of E
-p

and K, the yield surface % in stress space is given in invariant form by

q(S,E , K) = 0 -(5)

In the theory of Green and Naghdi 11,21, E is a primitive kinematical quantity

and no kinematical relation between E and E is assumed. The limitations
-p

concerning existence discussed under (i) above do not arise in this general frame-

work; and, if only for this reason, it seems to be preferable in a general theory

of plasticity to employ E and E rather than F and F . Again for the same reason,
-p ~e -p

7.



it seems preferable when using E and E not to introduce stress-free configura-
-p

tions as part of the general theory As soon as the identification between

the primitive E of [1,2] and the defined quantity E in (2) is made, the theory

_P 'P

of [1,2] loses some of its generality and the discussion (i) of existence becomes

relevant. In the remainder of this note we assume that this identification has

been made.

We now recall polar decompositions of the invertible tensors F,F e and F-p

and define deformation tensors C,C and C as follows:

F = R M , C =FTF =M 2

(6)
F =RM , C 

(

and 'e -e-e

F =R M , C = 2E+I (7)

where R,Re ,Rp are proper orthogonal tensors and M,M ,Mp are symmetric positive

definite tensors. We note that in view of (1),. (6) and (7), C may

be expressed as

C = M RTC R M . (8)

When K-K+ K- K then R-*R+, M- M, etc., and it can be deduced from (3), (6)

and (7) that

R Q(t)R , M , C+  C , E+ =,

R Q~t)R QT~t) M = Q(t)M (t) C tcq()R+,e Qte ) -,e -~ e

+ ()%c+ E+
R+ =Q(t)R M= , =C , =E
-P - -P __P _P ^-P _P __P -P

In special cases, of course, it may be desirable for purposes of interpretation
or experimental identification to make use of such stress-free configurations
in order to identify E_ by the form (2). Another way of identifying plasticstrain is through the use of an assumption which would require that E reduce

to E when S=O (see property 3 on p. 122 of [2]).

|8



Once the decomposition (1) is admitted, the strain energy 4 may be expressed

in the equivalent forms

(F 3K ,) 2 (F,FK) (10)

Since 9 must remain unaltered under the transformations K-, - K then

considering first the function *1 in (10), we obtain

+1

,_ , F ,K+ ) =*,(Q(t)F (t),Q(t)F ,K) (11)

for arbitrary proper orthogonal Q(t),4(t), where (3) have been used.
2,3

wecos ~):T TRTRecalling (6)3 and (7 choose (t)=R and Q(t)=TR in (11) so that

-- *,(R TM R ,M ,K) (12)
Te 40 -p

and we note the presence of R in the arguments of (12). We have shown that a

necessary condition for the satisfaction of invariance requirements is that

in (10) 1 depend on F ,F ,t( only through the arguments appearing in (12). It

is readily seen, with the help of (9), that taking *1 in the form (12) is also

sufficient for the satisfaction of invariance requirements. Observing the

relations RTM R = (R c R )2 and M = C , we can express 4 as a properly
ep -P-e-p _p P

invariant function of RT C R ,C ,K. This was the form used in section 4 of [4].

Considering now the function *2 in (10)2, it can be shown by a similar argument

that a necessary and sufficient condition for the satisfaction of invariance

requirements is that $2 can depend on F,FK only in the forms
A

2(M,MK) : 43(CPC,) = *(EEc) , (13)

the last of which is that employed in [1,2,4,9]. Indeed, in view of (8), the

reduced forms of (12) and (13) are equivalent.

We now return to Mandel's development [51 and introduce the notations

A A A
F ,R ,M for the values of F ,R ,M associated with his "isoclinic" stress-

A A A t A
free configuration K, as well as =F S FA/det F • A typical result in Mandel's

9 -.- P -P

9.



development is an equation of the formt

¢(rr) = o (14)

for a yield surface in stress space. Applying the invariance requirements (3)

and assuming c to be invariant, we obtain

( (Wr) = p( (t)F S F/det F ) (15)
...p ~ ~p _p

for arbitrary proper orthogonal Q(t). With the help of (15), the polar decomposi-

tion F =R M , the fact that M =M by virtue of requirement (b) and choosing

ATQ(t) =R ,(14) reduces to -pp-

C(m pSM ) 0 (16)

Thus, can depend on the argument 7 only through S and M . Clearly, the left-

hand side of (16) can be written as a different function (S,E ). Hence, apart

from the work-hardening parameter K not included in (14), the form (16) of the

yield surface is equivalent to (5) which is that used by Green and Naghdi [1,2].

Parallel arguments apply to other relevant equations in [5] and it should now be

clear that the criticism of [1,4] by Mandel and others who have adopted his

scheme is unjustified.

It should be emphasized that in deducing (12), (13) and (16) no assumptions

were made concerning material symmetry and consequently these equations are valid

'or a material which is anisotropic in its reference configuration. Some authors,

,or example Mandel [5], regard equations such as (5) and (13) to be valid only for

'pecial materials which are "isotropic in the intermediate configuration."

'owever, we have just seen that the invariance requirements (3) imply that con-

:3titutive equations such as (10)2 always satisfy an equation of the form (13).

Finally a comment must be made about a paper by Silhavy [101. In the

The notation 4 in (14) corresponds to f in (8.4) of [5] and we have suppressed
Mandel's variables T,ot since they do not affect the present discussion.
It is important to notc that we would still employ the~full invariance require-
ments (3) even if^these variables were included. Our FpRpP,6 correspond,
respectively, to P,Q,L,7 of [5] and the work-hardening parameter K is not
explicitly exhibited In No.

10.



context of a functional type theory, he has attempted to prove that the appropri-

ate transformation law for F is F -F (or p-p in the notation of [10)), i.e.,
p p P

(t) =I in (3). However, his main proposition (Proposition 4 in [101) states
that a certain set P q rNN) is equal to a set (ToN). As Silhavy himself

Se qf 0 - equ 0 As Sihvhmsl
points out, there may be more than one element in the set P (noN). Therefore,

qf 0 -

it cannot be deduced from Silhavy's Proposition 4 that F P F under superposed

rigid body motions*.
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Eerkeley.

For example, in plane geometry a rotation of the unit circle C through an
angle of 45 degrees, say, maps C into itself but it certainly cannot be argued
that each point of C is mapped into itself.
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